Search results for "Lipoprotein Metabolism"

showing 5 items of 5 documents

The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis.

2008

The plasma lipid transfer proteins promote the exchange of neutral lipids and phospholipids between the plasma lipoproteins. Cholesteryl ester transfer protein (CETP) facilitates the removal of cholesteryl esters from HDL and thus reduces HDL levels, while phospholipid transfer protein (PLTP) promotes the transfer of phospholipids from triglyceride-rich lipoproteins into HDL and increases HDL levels. Studies in transgenic mouse models and in humans with rare genetic deficiencies (CETP) or common genetic variants (CETP and PLTP) highlight the central role of these molecules in regulating HDL levels. Human CETP deficiency is associated with dramatic elevations of HDL cholesterol and apolipopr…

Genetically modified mousemedicine.medical_specialtyApolipoprotein BLipoproteinscholesteryl ester transfer proteinQD415-436BiochemistryLipoprotein Metabolismchemistry.chemical_compoundEndocrinologyPhospholipid transfer proteinInternal medicineCholesterylester transfer proteinmedicineAnimalsHumansCETP inhibitorPhospholipidsPolymorphism GeneticbiologyChemistryCholesterolTorcetrapibCell BiologyAtherosclerosisphospholipid transfer proteincarbohydrates (lipids)EndocrinologyBiochemistrylow density lipoproteinsToxicitybiology.proteinlipids (amino acids peptides and proteins)high density lipoproteinsCarrier ProteinsJournal of lipid research
researchProduct

Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

2016

International audience; Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a pro…

0301 basic medicineLymphocyteIpid Transfer ProteinAdaptive ImmunityCardiovascular-DiseaseT-Lymphocytes RegulatoryLipoprotein MetabolismLeukocyte CountPhospholipid transfer proteinPolarizationImmunology and Allergy[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyHypersensitivity DelayedPhospholipid Transfer ProteinsCell PolarityCell DifferentiationT-Lymphocytes Helper-InducerT helper cellFlow CytometryAcquired immune systemCell biologyInfectious Diseasesmedicine.anatomical_structureEndothelial-CellsCytokines[SDV.IMM]Life Sciences [q-bio]/ImmunologyLymphocytemedicine.symptomResearch ArticleDensity-Lipoprotein[SDV.IMM] Life Sciences [q-bio]/ImmunologyHuman Atherosclerotic PlaquesT cellCirculating Interleukin-18ImmunologyT CellAntigen-Presenting CellsInflammationAcute Myocardial-InfarctionGATA3 Transcription FactorBiology03 medical and health sciencesImmune systemmedicineAnimalsAntigen-presenting cellDeficient MiceAlpha-TocopherolMice Inbred C57BL030104 developmental biologyImmunologyVitamin-ET-Box Domain ProteinsBiomarkersSpleen
researchProduct

Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model

2016

International audience; The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertrigl…

0301 basic medicineCD36 Antigens[SDV]Life Sciences [q-bio]lcsh:Medicine030204 cardiovascular system & hematologyLipoprotein MetabolismMice0302 clinical medicineIntestinal mucosaHyperinsulinemiaIntestinal Mucosalcsh:ScienceMetabolic Syndromeeducation.field_of_studyMultidisciplinaryIntestinal lipid absorption3. Good healthPostprandialChain Fatty-Acidslipids (amino acids peptides and proteins)Research ArticleNonfasting Triglyceridesmedicine.medical_specialtyPopulationTransportDistal IntestineBiologyDiet High-FatAbsorption03 medical and health sciencesInsulin resistanceInternal medicineHyperinsulinismmedicineAnimalsCholesterol UptakeObesityeducationSecretion[ SDV ] Life Sciences [q-bio]Insulin-Resistancelcsh:RHypertriglyceridemiaLipid metabolismmedicine.diseaseLipid MetabolismDisease Models Animal030104 developmental biologyEndocrinologyGene Expression Regulationlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Effects of lipid-lowering drugs on high-density lipoprotein subclasses in healthy men-a randomized trial.

2013

Context and Objective Investigating the effects of lipid-lowering drugs on HDL subclasses has shown ambiguous results. This study assessed the effects of ezetimibe, simvastatin, and their combination on HDL subclass distribution. Design and Participants A single-center randomized parallel 3-group open-label study was performed in 72 healthy men free of cardiovascular disease with a baseline LDL-cholesterol of 111±30 mg/dl (2.9±0.8 mmol/l) and a baseline HDL-cholesterol of 64±15 mg/dl (1.7±0.4 mmol/l). They were treated with ezetimibe (10 mg/day, n = 24), simvastatin (40 mg/day, n = 24) or their combination (n = 24) for 14 days. Blood was drawn before and after the treatment period. HDL subc…

MaleSimvastatinlcsh:MedicinePharmacologyBiochemistryLipoprotein MetabolismVascular MedicineSubclasslaw.inventionchemistry.chemical_compoundHigh-density lipoproteinRandomized controlled triallawMedicine and Health SciencesMedicinelcsh:ScienceHypolipidemic AgentsMultidisciplinaryHealthy VolunteersResearch DesignDrug Therapy Combinationlipids (amino acids peptides and proteins)Lipoproteins HDLResearch Articlemedicine.drugAdultmedicine.medical_specialtylipid-lowering drugs high-density lipoprotein healthy menDrug Research and DevelopmentClinical Research DesignLipoproteinsHypercholesterolemiaCardiologyAdipokineContext (language use)Research and Analysis MethodsCardiovascular PharmacologyAdipokinesEzetimibeInternal medicineHumansClinical TrialsPharmacologybusiness.industryCholesterollcsh:RBiology and Life SciencesProteinsnutritional and metabolic diseasesEzetimibeAtherosclerosisGlucoseEndocrinologychemistrySimvastatinAzetidineslcsh:QClinical MedicinebusinessBiomarkersPLoS ONE
researchProduct

In vivo metabolism of LDL subfractions in patients with heterozygous FH on statin therapy

2004

LDL can be subfractionated into buoyant (1.020-1.029 g/ml(-1)), intermediate (1.030-1.040 g/ml(-1)), and dense (1.041-1.066 g/ml(-1)) LDLs. We studied the rebound of these LDL-subfractions after LDL apheresis in seven patients with heterozygous familial hypercholesterolemia (FH) regularly treated by apheresis (58 +/- 9 years, LDL-cholesterol = 342 +/- 87 mg/dl(-1), triglycerides = 109 +/- 39 mg/dl(-1)) and high-dose statins. Apolipoprotein B (apoB) concentrations were measured in LDL subfractions immediately after and on days 1, 2, 3, 5, and 7 after apheresis. Compartmental models were developed to test three hypotheses: 1) that dense LDLs are derived from the delipidation of buoyant and in…

medicine.medical_specialtyVery low-density lipoproteinApolipoprotein Blow density lipoprotein metabolismFamilial hypercholesterolemiaQD415-436Biochemistrychemistry.chemical_compoundEndocrinologyInternal medicinerebound kineticsmedicinesmall dense low density lipoproteinsdensity gradient ultracentrifugationbiologyfamilial hypercholesterolemiaChemistryCholesterollow density lipoprotein subtypesCell BiologyMetabolismmedicine.diseaseEndocrinologyApheresisLDL apheresisbiology.proteinDensity gradient ultracentrifugationlipids (amino acids peptides and proteins)Journal of Lipid Research
researchProduct